

Flying the Solar Skies

Energy 2001

Kansas City, Missouri

Presented by
Richard Wickman

NASA Headquarters

June 5, 2001

The Endeavor

Develop solar aircraft technology to open the door to low cost ultralong duration high altitude flight.

- Star topology used with gateway connections to terrestrial or satellite networks

Airborne Standby

Autonomously Controlled Station-Keeping Mode

Focus on:

Efficiency

Reliability

Redundancy

 The Environmental Research Aircraft and Sensor Technology (ERAST) Project was initiated in 1995.

ERAST Objectives

- Support development of Uninhabited Aerial Vehicle (UAV)
 capabilities: very high altitude (90 100K ft.); high altitude- long endurance (60K ft.- 8 hrs.) and extreme duration (>96 hrs.)
- Develop new miniaturization and automation approaches for airborne sensors
- Effectively transfer (UAV) technology to US industry to establish competitive capabilities

Approach

- Formulation of an alliance with industry, other US Government agencies, and academia
- Utilize unique flight techniques and capabilities to demonstrate critical technologies
- Perform major flight demonstrations & science missions using UAVs

Solar Aircraft Evolution

Gossamer Penguin (Circa 1979)

Centurion (Circa 1999)

Pathfinder (Circa 1995)

Helios Prototype (Today)

Pathfinder Plus (Circa 1998)

Earth Monitoring Aircraft (2005 and Beyond)

Solar Powered Aircraft Road Map

Pathfinder Plus & Helios Prototype

- Pathfinder+ is World Altitude Record holder over 80,000 ft
- Next NASA milestone is to reach 100,000 ft with Helios

Comparison of Rechargeable Energy Storage Systems

Regenerative Fuel Cell Energy Storage System Summary

Day Cycle

- Sun energy converted to electricity by Solar Cells
- Half of electricity goes to Motor to propel plane
- Other Half of electricity goes to Electrolyzer to convert water into Hydrogen and Oxygen fuel

Night Cycle

- Oxygen and
 Hydrogen
 combine in
 Fuel Cell to
 produce
 electricity to
 propel plane
- Water from
 Oxygen and
 Hydrogen
 stored until
 next day

Fuel cell energy storage system enables continuos flight through night

NASA Schedule for Helios

Goal 1: Develop and fly a prototype solar powered UAV at or above 100,000ft

Goal 2: Develop and fly a prototype solar power UAV capable of sustaining 96 hrs above 50,000'

WBS Element	FY00		FY01			FY02		FY03	
	Q1 Q2 Q	3 Q4	Q1 Q	2 Q3 Q	4 Q1	Q2 Q	3 Q4	Q1 Q2	Q3 Q4
Prototype Fuel Cell/Electrolyzer									
Subsystem Design/Integration									
ESS Qual and Flight Units									L
Helios Mods & Integration									
Grnd & FLT Tests @ PMRF									

Helios Prototype Summary

- 247-ft wingspan (greater than a 747 jumbo jet)
- Weighs under 2,000 lbs (less than most automobiles)
- Take off speed of 25 mph,
 cruises at 60 to 90+ mph
- Environmentally benign zero pollutants!
- 35 kW Solar Array using 18.3% efficient solar cells
- Eight 2hp Electric Motors

- Designed for operation to 70,000 ft.
- Six Wing Sections
- Five Landing Gear Pods
- Carbon/Kevlar Fiber
 Construction
- Fixed Landing Gear
- Redundant Flight Critical Sensors
- Redundant Datalinks

Terrestrial Application

- Project Oasis at NASA Dryden Flight Research Center, Edwards, CA
- Concentrating Solar PV
- High Efficiency Cell under Low-Cost Fresnel Lens
- Power Output Curve Coincides with Typical Electrical Load Curve
- Feasibility Study Underway for 3-4 MW Grid-Connected
 PV System

Video: History of Solar Powered Flight

Approximately
10 minutes long
Produced by NASA Dryden PACE Office